Топология сети ячеистая достоинства и недостатки. Что Такое Mesh Система WiFi — Оборудование и Применение Меш Сетей. Вычисление емкости и пропускной способности

Ячеистая (также известна как сетчатая, сеточная) топология (mesh) — это тип сетевой топологии, в которой каждое устройство соединено с множеством других каналами связи «точка-точка», при этом устройство не только захватывает и обрабатывает свои данные, но и служит ретранслятором сообщений для других устройств. Эта топология характеризуется высокой надежностью и отказоустойчивостью, благодаря наличию множества резервных связей между узлами сети. Неисправность узла или обрыв линии связи не влияют на работоспособность сети (при обрыве одного из каналов связи возможна передача через другие). Для того чтобы найти наилучший путь передачи данных между узлами ячеистой сети, используются маршрутизаторы, коммутаторы или точки доступа.

Существует два типа ячеистых топологий: полносвязная топология (full connected ) и топология неполной связности (partially connected) .

В полносвязной топологии каждый узел напрямую связан со всеми остальными узлами сети. Эта топология отражает архитектуру Интернет, в котором имеется множество путей до любой точки. Полносвязная топология довольно дорогостоящая, т.к. в случае проводных сетей требует большого расхода кабеля и большого количества портов для подключения, но в тоже время обеспечивает высокую отказоустойчивость. На практике она используется редко и применяется там, где требуется обеспечение высокой надежности и максимальной отказоустойчивости, например при построении магистральных сетей.

Топология неполной связности получается из полносвязной путем удаления некоторых возможных связей. В этой топологии количество соединений каждого устройства зависит, прежде всего, от его значимости в сети. Топология неполной связности менее дорогостоящая, чем полносвязная и характерна для большинства периферийных сетей, используемых для подключения к магистральным сетям с полносвязной топологией.


Несмотря на очевидное достоинство сетей с ячеистой топологией, основными их недостатками являются высокая стоимость, сложность подключения/отключения сетевого оборудования и его конфигурация.

Часто ячеистая топология используется совместно с другими топологиями («цепочка», «кольцо» и «звезда») и формирует сеть с гибридной топологией.


Рассмотрев существующие сетевые топологии, обратим внимание на другие немаловажные вопросы, влияющие на выбор топологии сети. Топология должна обеспечивать:

  • удобное управление потоками данных;
  • устойчивость к неисправностям узлов, подключенных к сети и обрывам кабеля;
  • возможность для дальнейшего расширения сети и перехода к новым высокоскоростным технологиям;
  • низкую стоимость создания и сопровождения сети.

При этом надо учитывать:

  • уже имеющуюся кабельную инфраструктуру и оборудование, если сеть требуется просто расширить;
  • физическое размещение устройств;
  • размеры планируемой сети;
  • объем и тип информации для совместного использования.

Всем привет! Статья про оборудование и примение меш сетей назрела уже давно, но сесть за ее написание я решился только сейчас. Все дело в том, что некоторое время назад абсолютно разные компании мне стали присылать на обзор схожие по функционалу наборы устройств WiFi Mesh систем — , . Эта технология мне настолько понравилась, что я даже решил оставить себе один из наборов для домашнего использования. И разумеется, после этих публикаций посыпалось множество просьб рассказать поподробнее, что такое mesh сетка.

Чем отличается Mesh сетка WiFi от обычного роутера?

Главная суть mesh сети — это покрыть большую площадь стабильным беспроводным сигналом без потери скорости и с бесшовным роумингом.

Каким образом раньше мы старались этого добиться? Покупали самый дорогой и мощный роутер, который бы мог на максимальное расстояние ретранслировать wifi сигнал. Если же его не хватало, то мы ставили дополнительно wifi репитер, который еще немного продлевал его до отдаленного участка. В общем-то, все я подробно описывал ранее.

Однако у них у всех были достаточно весомые недостатки:

  • Прежде всего, любое новое звено в цепочке, то есть каждый новый репитер, значительно снижали скорость. Где-то в два раза, а где то и больше, в зависимости от первоначальной мощности передатчика и стоимости всего оборудования.
  • Второй момент — это цена. Купить дорогой роутер стоимостью от 3000 — 5000 и более рублей может себе позволить не каждый. Если же к нему добавить репитер и антенну, то прибавьте к этой сумме еще несколько тысяч.
  • Третье — настройка. Любой репитер сначала нужно вручную подключить к основной wifi сети и при помощи телефона или компьютера настроить его параметры на ретрансляцию сигнала. Если их у вас несколько, то с каждым нужно будет это сделать по очереди.
  • Наконец, при перемещении по дому смартфон или ноутбук должны были переподключаться от основного источкиа — маршрутизатора, к дополнительным, в результате чего происходила потеря связи и все текущие задачи, связанные с работой в интернете — онлайн игра, загрузка файлов, просмотр видео и т.д. — тоже приостанавливались. Согласитесь, неудобно.

Что такое Mesh система?

Mesh сеть — это одноранговая система, нагрузка которой распределена между несколькими равноправными ячейками (точками доступа), каждая из которых раздает беспроводной сигнал в общей сети.

Суть технологии «mesh» в том, что подключив одну точку доступа к интернету или существующей сети (кабельной или беспроводной), созданной при помощи какого-то уже имеющегося в наличии роутера, остальные на автомате подхватывают ее сигнал, и работают с теми же настройками, что и первая.

Оборудование для mesh сети

Обычно в комплекте оборудования для mesh сетки идет сразу несколько устройств — от двух и более. Если не вдаваться в детали, то каждое из них — это аналог обычного wifi роутера.

Все модули в mesh системе равноправны и подключение ее к роутеру или напрямую через кабель провайдера к интернету можно выполнить с любого из них. В итоге мы получаем несколько равнозначных источников сигнала wifi, которые не нужно настраивать каждый по отдельности, как в случае с использованием wifi репитеров. А ведь это особенно актуально в домашнем использовании, и не только.


При этом если при подключении к репитеру скорость wifi падает по сравнению с основным источником, даже если вы находитесь от него в непосредственной близости, то здесь она остается на прежнем уровне.

При необходимости можно легко подключить еще одну или несколько точек также без выполнения на ней каких-либо конфигураций.

Еще одним характерным свойством mesh wifi сетки является бесшовный роуминг — это когда при перемещении по дому ваше устройство — смартфон, ноутбук и т.д. — само выбирает, какая точка доступа в данный момент самая ближайшая, и переподключается к ней без разрыва соединения с беспроводной сетью. То есть реконнект происходит незаметно для конечного пользователя. А это означает, что ни загрузки, ни прямая онлайн трансляция, ни что-то еще, связанное с работой в интернете, не прерывается.

Применение систем mesh сетей wifi

То есть представим, что вы живете в однокомнатной квартире. Покупаете один элемент mesh сетки и используете его так же, как обычный роутер. Потом вы переезжаете в частный дом с 4-5 комнатами — и все, что достаточно сделать, это купить еще 2-3 компонента той же системы и просто включить их в розетку, а настроятся они между собой автоматически.

В общем, плюсы налицо и по моему мнению, именно за mesh системами будущее беспроводных сетей. Сколько же это стоит, спросите вы? Коллеги, меня тоже этот вопрос волновал больше всего. Учитывая все преимущества, я бы купил такую штуку вне зависимости от его дороговизны (в разумных пределах, конечно).

Но для обычного пользователя, а не такого фаната как я, вопрос денег будет если не на первом, то точно на втором месте. Так вот, самое интересное, что цена одного комплекта из нескольких ячеек вполне сравнима с теми суммами, которые просят за один только маршрутизатор из среднего сегмента, который в моих тестах обеспечил более-менее похожую дальность приема беспроводного сигнала.

Простой пример — сейчас я использую у себя wifi роутер TP-Link Archer C1200 и он меня в целом устраивает. Его тесты на скорость и дальность приема вы можете увидеть по . Если посмотреть его цену на Яндекс Маркете, то она стартует от 3550 рублей.


Берем набор Tenda Nova MW3 из 2 модулей — 5200 р. Немного дороже, но зато намного выше зона покрытия без потери скорости с возможностью дальнейшего расширения сети.

Разумеется, это самый простой комплект и здесь нет тех дополнительных функций, которые предоставляет данный маршрутизатор (файловый сервер, работа с мобильными модемами и др). Если вы хотите, чтобы в mesh наборе были и все эти ништяки, то нужно выбирать более дорогую модель. Но если вас интересует один только WiFi, то нет смысла переплачивать.

Подведем итог и назовем основные достоинства mesh сетки:

  • Большая зона покрытия
  • Высокая скорость
  • Бесшовный wifi
  • Простота в настройке
  • Возможность расширения системы

При создании компьютерной сети передачи данных, когда соединяются все компьютеры сети и другие сетевые устройства, формируется топология компьютерной сети .

Сетевая топология (от греч. τоπος, - место) - способ описания конфигурации сети, схема расположения и соединения сетевых устройств.

Физическая топология сети передачи данных

Исторически сложились определённые типы физических топологий сети. Рассмотрим некоторые, наиболее часто встречающиеся топологии.

«Общая шина»

Общая шина являлась до недавнего времени самой распространенной топологией для локальных сетей. В этом случае компьютеры подключаются к одному коаксиальному кабелю по схеме «монтажного ИЛИ». Передаваемая информация, в этом случае, распространяется в обе стороны.

Применение топологии «общая шина» снижает стоимость кабельной прокладки, унифицирует подключение различных модулей, обеспечивает возможность почти мгновенного широковещательного обращения ко всем станциям сети. Основными преимуществами такой схемы являются дешевизна и простота разводки кабеля по помещениям. Самый серьезный недостаток общей шины заключается в ее низкой надежности: любой дефект кабеля или какого-нибудь из многочисленных разъемов полностью парализует всю сеть.

Другим недостатком общей шины является ее невысокая производительность, так как при таком способе подключения в каждый момент времени только один компьютер может передавать данные в сеть. Поэтому пропускная способность канала связи всегда делится здесь между всеми узлами сети.

Рисунок 5. Схема подключения компьютеров по схеме «общая шина».

Топология «звезда»

В этом случае каждый компьютер подключается отдельным кабелем к общему устройству, называемому коммутатором (концентратором, хабом) который находится в центре сети. В функции коммутатора входит направление передаваемой компьютером информации одному или всем остальным компьютерам сети. Главное преимущество этой топологии перед общей шиной - значительно большая надежность. Любые неприятности с кабелем касаются лишь того компьютера, к которому этот кабель присоединен, и только неисправность коммутатора может вывести из строя всю сеть. Кроме того, коммутатор может играть роль интеллектуального фильтра информации, поступающей от узлов в сеть, и при необходимости блокировать запрещенные администратором передачи.

Сетевой концентратор илиХаб (жарг. от англ. hub - центр деятельности)- сетевое устройство, предназначенное для объединения нескольких устройствEthernetв общий сегмент сети. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна. Термин концентратор (хаб)применим также к другим технологиям передачи данных:USB, FireWire и пр.

В настоящее время сетевые хабы не выпускаются- им на смену пришли сетевые коммутаторы (switch), выделяющие каждое подключённое устройство в отдельный сегмент.

Рисунок 6. Схема подключения компьютеров по схеме «звезда»

Топология «кольцо»

В информационно вычислительных сетях с кольцевой конфигурацией данные передаются по кольцу от одного компьютера к другому, как правило, в одном направлении. Если компьютер распознает данные как «свои», то он копирует их себе во внутренний буфер. Кольцо представляет собой очень удобную конфигурацию для организации обратной связи - данные, сделав полный оборот, возвращаются к узлу-источнику. Поэтому этот узел может контролировать процесс доставки данных адресату. Часто это свойство кольца используется для тестирования связности сети и поиска узла, работающего некорректно. Для этого в сеть посылаются специальные тестовые сообщения.

В сети с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прервался канал связи между остальными станциями.

Поскольку такое дублирование повышает надёжность системы, данный стандарт с успехом применяется в магистральных каналах связи.

Данная физическая топология с успехом реализуется в сетях, созданных с использованием технологии FDDI.

FDDI(англ. Fiber Distributed Data Interface - распределённый волоконный интерфейс данных) - стандарт передачи данных в локальной сети, протяжённостью до 200 километров. Стандарт основан на протоколеToken Bus . В качестве среды передачи данных вFDDIрекомендуется использовать волоконно-оптический кабель, однако можно использовать и медный кабель, в таком случае используется сокращениеCDDI(Copper Distributed Data Interface). В качестве топологии используется схемадвойного кольца , при этом данные в кольцах циркулируют в разных направлениях. Одно кольцо считается основным, по нему передаётся информация в обычном состоянии; второе - вспомогательным, по нему данные передаются в случае обрыва на первом кольце. Для контроля за состоянием кольца используется сетевой маркер, как и в технологииToken Ring.

Рисунок 7. Схема подключения компьютеров по схеме «кольцо»

Полносвязная топология

Полносвязная топология соответствует сети, в которой каждый компьютер сети связан со всеми остальными. Несмотря на логическую простоту, этот вариант оказывается громоздким и неэффективным. Действительно, каждый компьютер в сети должен иметь большое количество коммуникационных портов, достаточное для связи с каждым из остальных компьютеров сети. Для каждой пары компьютеров должна быть выделена отдельная электрическая линия связи. Полносвязные топологии применяются редко, так как не удовлетворяют ни одному из приведенных выше требований. Чаще этот вид топологии используется в многомашинных комплексах или глобальных сетях при небольшом количестве компьютеров.

Рисунок 8.Схема подключения компьютеров по схеме «полносвязная топология»

Ячеистая топология

Ячеистая топология (англ. mesh-ячейка сети ) получается из полносвязной путем удаления некоторых возможных связей. В сети с ячеистой топологией непосредственно связываются только те компьютеры, между которыми происходит интенсивный обмен данными, а для обмена данными между компьютерами, не соединенными прямыми связями, используются транзитные передачи через промежуточные узлы. Ячеистая топология допускает соединение большого количества компьютеров и характерна, как правило, для глобальных сетей.

Рисунок 9. Схема подключения компьютеров по схеме «ячеистая топология»

В то время как небольшие сети, как правило, имеют типовую топологию - звезда, кольцо или общая шина, для крупных сетей характерен симбиоз различных топологий. В таких сетях можно выделить отдельные произвольно связанные фрагменты (подсети), имеющие типовую топологию, поэтому их называют сетями со смешанной топологией.

Топология «дерево»

Такая топология является смешанной, здесь взаимодействуют системы с различными топологиями. Такой способ смешанной топологии чаще всего применяется при построении ЛВСс небольшим количеством сетевых устройств, а также при создании корпоративныхЛВС. Данная топология совмещает в себе относительно низкую себестоимость и достаточно высокое быстродействие, особенно при использовании различных сред передачи данных - сочетании медных кабельных систем,ВОЛС, а также применяя управляемые коммутаторы.

Рисунок 10. Схема подключения компьютеров по схеме «дерево»

В топологиях типа «общая шина» и «кольцо» линии связи, соединяющие элементы сети (компьютеры, сетевые устройства и пр.), являются распределёнными (англ. shared) . При совместном использовании ресурс линии делится между сетевыми устройствами, т.е. они являются линиями связи общего использования.

Помимо распределённых , существуютиндивидуальные линии связи , когда каждый элемент сети имеет свою собственную (не всегда единственную) линию связи. Пример - сеть, построенная по топологии «звезда», когда в центре располагается устройство типа коммутатор, а каждый компьютер подключён отдельной линией связи.

Общая стоимость сети построенной с применением распределённых линий связи будет гораздо ниже, однако и производительность такой сети будет ниже, потому что сеть с распределённой средой при большом количестве узлов будет работать всегда медленнее, чем аналогичная сеть с индивидуальными линиями связи, так как пропускная способность индивидуальной линии связи достается одному компьютеру, а при ее совместном использовании - делится на все компьютеры сети.

В современных сетях, в том числе глобальных, индивидуальными являются только линии связи между конечными узлами и коммутаторами сети, а связи между коммутаторами (маршрутизаторами) остаются распределёнными, так как по ним передаются сообщения разных конечных узлов.

Рисунок 11. Индивидуальные и распределённые линии связи в сетях на основе коммутаторов

Логическая топология сети передачи данных

Помимо физической топологии сети передачи данных, предполагается и логическая топология сети . Логическая топология определяет маршруты передачи данных в сети. Существуют такие конфигурации, в которых логическая топология отличается от физической. Например, сеть с физической топологией «звезда» может иметь логическую топологию «шина» – все зависит от того, каким образом устроен сетевой коммутатор или интернет-шлюз, маршрутизатор (VLAN, наличиеVPN, и т.п.).

Чтобы определить логическую топологию сети, необходимо понять, как в ней принимаются сигналы:

    в логических шинных топологиях каждый сигнал принимается всеми устройствами;

    в логических кольцевых топологиях каждое устройство получает только те сигналы, которые были посланы конкретно ему.

Кроме того, важно знать, каким образом сетевые устройства получают доступ к среде передачи информации.

Разделение сети на логические сегменты

Кабельная система информационно вычислительной сети - самая «консервативная» часть информационной системы предприятия. Любое ее изменение сопряжено с существенными материальными затратами. Однако возможность переконфигурирования инфраструктуры часто может существенно повысить управляемость и надежность всей системы. Например, объединение портов управляемых по сети устройств (коммутаторы, аварийные источники питания и т. п.) в «физически обособленную» сеть существенно повышает уровень безопасности системы, исключая доступ к таким элементам с произвольных рабочих станций. Кроме того, выделение, например, компьютеров бухгалтерии в отдельную сеть исключает доступ к ним по сети всех остальных пользователей.

Подобная возможность изменения конфигурации сетевой конфигурации реализуется путем создания виртуальных сетей (англ. Virtual local area network,VLAN).

VLANпредставляет собой логически (программно) обособленный сегмент основной сети. Обмен данными происходит только в пределах однойVLAN. Сетевые устройства разныхVLANне видят друг друга. Самое главное, что из однойVLANв другую не передаются широковещательные сообщения.

VLANможно создать только на управляемых устройствах. ОднаVLANможет объединять порты нескольких коммутаторов (VLANс одинаковым номером на разных коммутаторах считаются одной и той жеVLAN).

Варианты создания VLAN

На практике существует несколько технологий создания VLAN.

    В простейшем случае порт коммутатора приписывается к VLANопределенного номера (port basedVLANили группировка портов). При этом одно физическое устройство логически разбивается на несколько: для каждойVLANсоздается «отдельный» коммутатор. Очевидно, что число портов такого коммутатора можно легко изменить: достаточно добавить или исключить изVLANсоответствующий физический порт.

    Второй, часто используемый способ, заключается в отнесении устройства к той или инойVLANна основеМАС-адреса. Например, так можно обособить камеры видео наблюдения,IP-телефоны и т.п. При переносе устройства из одной точки подключения в другую, оно останется в прежнейVLAN, никакие параметры настройки менять не придется.

    Третий способ заключается в объединении устройств в сеть VLANпо сетевым протоколам. Например, можно «отделить» протокол IPX отIP, «поместить» их в разныеVLANи направить по различным путям.

    Четвертый способ создания VLANсостоит в многоадресной группировке.

VLANоткрывают практически безграничные возможности для конфигурирования сетевой инфраструктуры, соответствующей требованиям конкретной организации. Один и тот же порт коммутатора может принадлежать одновременно нескольким виртуальным сетям, порты различных коммутаторов - быть включенными в однуVLANи т. п. Обычно рекомендуется включать магистральные порты коммутаторов (порты, соединяющие коммутаторы) во всеVLAN, существующие в системе. Это значительно облетает администрирование сетевой структуры, поскольку иначе в случае отказа какого-либо сегмента и последующего автоматического изменения маршрута придется анализировать все варианты передачи данныхVLAN. Важно помнить, что ошибка в таком анализе, неправильный учет какого-либо фактора приведет к разрывуVLAN.

На рисунке 12 показан пример построения VLANиз компьютеров, подключенных к различным коммутаторам. Обратите внимание, что при использовании агрегированных каналов (на рисунке для связи устройствSwitch2 иSwitch3) в составVLANна каждом коммутаторе должны включаться именно агрегированные порты (обычно получают названия AL1, AL2 и т. д.).

Агрегация каналов (англ. Link aggregation, trunking) или IEEE 802.3ad - технология объединения нескольких физических каналов в один логический. Это способствует не только значительному увеличению пропускной способности магистральных каналов коммутатор-коммутатор или коммутатор-сервер, но и повышению их надежности.

Рисунок 12. Пример построения VLAN

Теги 802.1Q

В соответствии со стандартом IEEE 802.l Q номерVLANпередается в специальном поле кадраEthernet, которое носит названиеTAG. Поэтому пакеты, содержащие такое поле, стали называть тегированными (англ. tagged ), а пакеты без этого поля - не тегированными (англ. untagged ). ПолеTAGвключает в себя данныеQoS(поэтому все пакеты, содержащие информацию о качестве обслуживания, являются тегированными) и номерVLAN, на который отведено 12бит. Таким образом, максимально возможное числоVLANсоставляет 4096.

Сетевые адаптеры рабочих станций обычно не поддерживают теги, поэтому порты коммутаторов уровня доступа настраиваются в варианте не тегированными (untagged). Для того, чтобы через один порт можно было передать пакеты нескольких VLAN, он включается в соответствующиеVLANв режиме тегирования (обычно это магистральные порты или порты соединения двух коммутаторов).Коммутаторбудет анализировать поляTAGпринятых пакетов, и пересылать данные только в туVLAN, номер которой содержится в поле. Таким образом, через один порт можно безопасно передавать информацию сразу для несколькихVLAN.

При соединениях «точка - точка» порты для одинаковых VLANдолжны быть либо оба тегированными, либо оба не тегированными.

IEEE 802.1Q - открытый стандарт, который описывает процедуру тегирования трафика для передачи информации о принадлежности кVLAN.

Так как 802.1Q не изменяет заголовки кадра, то сетевые устройства, которые не поддерживают этот стандарт, могут передавать трафик без учёта его принадлежности к VLAN.

Рисунок 13. ФреймEthernetс тегом 802.1Q

IEEE 802.1Q помещает внутрь фрейма тег, который передает информацию о принадлежности трафика кVLAN. Размер тега - 4байта. Он состоит из таких полей:

TagProtocol Identifier (TPID)- Идентификатор протокола тегирования. Размер поля - 16 бит. Указывает, какой протокол используется для тегирования. Для 802.1 Q используется значение 0x8100.

Priority - приоритет . Размер поля - 3 бита. Используется стандартомIEEE 802.1p для задания приоритета передаваемого трафика.

Canonical Format Indicator (CFI) -Индикатор канонического формата. Размер поля - 1 бит. Указывает на форматMAC-адреса. 1 - канонический, 0 - не канонический.

VLANIdentifier (VID) - идентификатор VLAN . Размер поля - 12 бит. Указывает, к какомуVLANпринадлежит фрейм. Диапазон возможных значений VID от 0 до 4095.

При использовании стандарта EthernetII, 802.1Q вставляет тег перед полем «Тип протокола». Так как фрейм изменился, пересчитывается контрольная сумма.

VLAN1

При создании VLANследует учитывать тот факт, что служебная сетевая информация пересылается не тегированными пакетами. Для правильной работы сети администратору необходимо обеспечить передачу таких пакетов по всем направлениям. Самый простой способ настройки заключается в использованииVLANпо умолчанию (VLAN1). Соответственно, все порты компьютеров необходимо включать вVLANс другими номерами.

В VLAN1 по умолчанию находятся интерфейсы управления коммутаторами, причем ранее выпускавшиеся модели коммутаторов не позволяют сменить номер дляVLANуправления. Поэтому администратору следует тщательно продумать систему разбиения наVLAN, чтобы не допустить случайного доступа к управлению коммутаторами посторонних лиц, например, можно переместить все порты доступа коммутатора в другуюVLAN, оставив дляVLAN1 только магистральный порт. Таким образом, пользователи не смогут подключиться к управлению коммутатором.GVRP

Протокол GVRP предназначен для автоматического создания VLAN802.1Q. С его помощью можно автоматически назначать порты во все вновь создаваемыеVLAN. Несмотря на определенные удобства, такое решение является существенной брешью в системе обеспечения сетевой безопасности. Администратор должен представлять структуруVLANи производить назначения портов ручными операциями.

Сетевые устройства локальных сетей в топологии

При построении любой информационно вычислительной сети нельзя обойтись без специальных сетевых устройств, разнообразных по своему предназначению и функциональным возможностям. Рассмотрим некоторые из них.

Одной из главных задач, которая стоит перед любой технологией транспортировки данных, является возможность их передачи на максимально большое расстояние. Физическая среда накладывает на этот процесс свои ограничения - рано или поздно мощность сигнала падает, и приём становится невозможным. Но ещё большее значение имеет то, что искажается «форма сигнала» - закономерность, в соответствии с которой мгновенное значение уровня сигнала изменяется во времени. Это происходит в результате того, что физическая среда, например металлические провода, по которым передаётся сигнал, имеют собственную ёмкость и индуктивность. Электрические и магнитные поля одного проводника наводят ЭДС в других проводниках (длинная линия).

В случае передачи данных решение было найдено в ограничении сегмента сети передачи данных и применением повторителей. При этом повторитель на входе должен принимать сигнал, далее распознавать его первоначальный вид, и генерировать на выходе его точную копию. Такая схема в теории может передавать данные на сколь угодно большие расстояния (если не учитывать особенности разделения физической среды вEthernet).

Сегментсети - логически или физически обособленная часть сети (подсеть).

Повторитель - предназначен для увеличения расстояния сетевого соединения путём повторения электрического сигнала «один в один». Бывают одно и много портовые повторители.

Первоначально в Ethernetиспользовался коаксиальный кабель с топологией «шина», и нужно было соединять между собой всего несколько сегментов. Для этого обычно использовались повторители (англ. repeater ), имевшие два порта. Несколько позже появились многопортовые устройства, называемыеконцентраторами (англ. concentrator ). Их физический смысл точно такой же, но восстановленный сигнал транслируется на все активные порты, кроме того, с которого пришёл сигнал.

С появлением протокола 10baseT (витой пары) для избегания терминологической путаницы многопортовые повторители для витой пары стали называтьсясетевыми концентраторами (хабами), а коаксиальные -повторителями (репитерами) , по крайней мере, в русскоязычной литературе. Эти названия хорошо прижились и используются в настоящее время очень широко.

Термин концентратор (хаб) применим также к другим технологиям передачи данных: USB, FireWire и пр.

Мост, сетевой мост, бридж (жарг., калька с англ.bridge) - сетевое устройство, предназначенное для объединения сегментов (подсети) компьютерной сети разных топологий и архитектур.

Мосты «изучают» характер расположения сегментов сети путем построения адресных таблиц, в которых содержатся адреса всех сетевых устройств и сегментов, необходимых для получения доступа к данному устройству. Мост рассматривается как устройство с функциями хранения и дальнейшей отправки, поскольку он должен проанализировать поле адреса пункта назначения пакета данных и вычислить контрольную сумму CRCв поле контрольной последовательности пакета данных перед отправкой его на все порты. Если порт пункта назначения в данный момент занят, то мост может временно сохранить фрейм до освобождения порта. Для выполнения этих операций требуется некоторое время, что замедляет процесс передачи и увеличивает латентность.

В настоящее время мосты практически не используются, за исключением ситуаций, когда связываются сегменты сети с разной организацией физического уровня, например, между xDSLсоединениями, оптикой,Ethernet.

Сетевой коммутатор или свитч (жарг. от англ.switch- переключатель) - устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента сети. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передаёт данные только непосредственно получателю, исключение составляет широковещательный трафик всем узлам сети. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.

Коммутаторы иногда рассматриваются как многопортовые мосты, поскольку были разработаны с использованием мостовых технологий. В случаеSOHO-оборудования, режим прозрачной коммутации часто называют «мостовым режимом» (bridging).

Традиционно разделяют две категории коммутаторов: неуправляемые и управляемые. Однако компания D - Link предлагает еще одну, промежуточную категорию – настраиваемые коммутаторы (smartswitches ). Эти коммутаторы предназначены для использования на уровне доступа сетей малых и средних предприятий (Small-to-MediumBusiness ,SMB ).

Рисунок 14. КоммутаторDES-1210-28.

Сетевой шлюз (англ. gateway) - аппаратный маршрутизатор или программное обеспечение для сопряжения компьютерных сетей, использующих разные протоколы (например, локальной и глобальной).

Сетевой шлюз конвертирует протоколы одного типа физической среды в протоколы другой физической среды (сети). Например, при соединении локального компьютера с сетью Интернетиспользуется сетевой шлюз.

Сетевой шлюз - это точка сети, которая служит выходом в другую сеть. В сети Интернетузлом или конечной точкой может быть или сетевой шлюз, или хост.Интернет-пользователи и компьютеры, которые доставляют веб-страницы пользователям - это хосты, а узлы между различными сетями - это сетевые шлюзы.

Сетевой шлюз часто объединен с маршрутизатором, который управляет распределением и конвертацией пакетов в сети.

Рисунок 15. Беспроводной маршрутизатор 802.11g DIR-320

Маршрутизатор или роутер (от англ.router) - сетевое устройство, на основании информации о топологии сети и определённых правил принимающее решения о пересылке пакетов сетевого уровня между различными сегментами сети.

Роутеры (маршрутизаторы) являются одним из примеров аппаратных сетевых шлюзов. Основная задача сетевого шлюза - конвертировать протокол между сетями. Роутер сам по себе принимает, проводит и отправляет пакеты только среди сетей, использующих одинаковые протоколы.

Современные тенденции развития и построения информационно вычислительных сетей таковы, что применение беспроводных технологий стало повсеместным явлением. Беспроводные устройства создают сегменты (подсети) компьютерных сетей и имеют в своём составе различное по назначению оборудование. Особенно это характерно для сетевого оборудования класса SOHO.

Сетевые устройства этого класса часто совмещают в себе функции сетевого шлюза, маршрутизатора, беспроводной точки доступа, коммутатора, принт-сервера и др. В частности, беспроводной 802.11g интернет маршрутизатор DIR-320 позволяет создать проводную/беспроводную сеть в доме и (или) малом офисе.

В качестве примера применения вышеупомянутого сетевого оборудования, рассмотрим схему построения информационной вычислительной сети класса SOHO.

SOHO (от англ. Small Office / Home Office - малый/домашний офис) - название сегмента рынка электроники, предназначенного для домашнего использования. Как правило, характеризует устройства, не предназначенные для производственных нагрузок и довольно хорошо переживающие длительные периоды бездействия.

Пример построения простой информационно вычислительной сети

Простые информационно вычислительные сети класса SOHO, как правило, имеют топологию типа «звезда». Центральным устройством такой сети является интернет-шлюз, совмещающий в себе функции нескольких устройств.

Рисунок 16. Схема информационно вычислительной сети SOHO

В приведённой схеме (рис.16) центральным устройством является интернет-маршрутизатор DIR-320 . Основное предназначение этого устройства – распределение услуги «доступ вИнтернет» между пользователями информационно вычислительной сети классаSOHO.

Подключив DIR -320 к выделенной линии или широкополосному модему, пользователи могут совместно использовать высокоскоростное соединение с Интернет, подключившись к встроенному в устройство коммутатору или посредством беспроводной технологии 802.11g. Функция «Guest Zone» предоставляет второй «канал» беспроводного соединения и второй домен маршрутизации, что отделяет гостевую зону от главной сети для наилучшей защиты и управления.

Интернетмаршрутизатор D-Link DIR-320 содержит портUSBдля подключенияUSB-принтера, что позволяет пользователям совместно использовать принтер. Кроме того, встроенный 4-х портовыйEthernet-коммутатор позволяет подключать компьютеры, оснащенныеEthernet-адаптерами, игровые консоли и другие устройства к сети

DIR-320 оснащен встроенным межсетевым экраном, что защищает пользовательскую сеть от вредоносных атак. Это минимизирует угрозы от действий хакеров и предотвращает нежелательные вторжения в сеть. Дополнительные функции безопасности такие, как например, фильтрМАС-адресов, предотвращают неавторизованный доступ к сети. Функция «родительского контроля» позволяет запретить пользователям просмотр нежелательного контента. Также беспроводной маршрутизатор 802.11g поддерживает стандарты шифрованияWEPи WPS. Благодаря поддерживаемому функционалу маршрутизации и безопасности, беспроводной маршрутизатор D-Link DIR-320 позволяет создать беспроводную сеть для дома или офиса.

Кроме выше перечисленных возможностей, к USBпорту DIR-320 возможно подключить EVDO/3G/WiMaxмодуль, тем самым получить резервный канал подключения кИнтернет.

Сетевой дисковый массив DNS-323 с 2 отсеками для жестких дисков SATA предоставляет пользователям возможность совместного использования документов, файлов, и цифровых медиафайлов в домашней или офисной сети. Благодаря встроенномуFTP-серверу возможен удаленный доступ к файлам черезИнтернет.DNS-323 обеспечивает защиту данных, предоставляя доступ к файлам по локальной сети или черезИнтернеттолько определенным пользователям или группам пользователей с правом чтения или чтения/записи каталогов.

В DNS-323 доступны 4 различных режима работы с жесткими дисками (Standart, JBOD, RAID 0, RAID 1), позволяющих пользователям выбрать необходимую конфигурацию. В режиме Standart для использования доступны два отдельных жестких диска. Режим JBOD объединяет оба диска в один. Режим RAID 0 обеспечивает высокую производительность за счет разделения записи и чтения между двумя жесткими дисками. При использовании режима RAID 1 содержимое одного жесткого диска дублируется на другой, что обеспечивает максимальную надежность. Если один из жестких дисков выходит из строя, второй продолжает функционировать в полном объеме.

Функциональные возможности приведённой на рис.16 схемы информационно вычислительной сети можно расширить, включив в её состав устройства IPTV,IP-телефонии, видео наблюдения и т.п. Принципиально структура данной сети, от включения в её состав дополнительных сервисов, не изменится.

В этой статье я планирую познакомить вас с Wi-Fi Mesh системами. Расскажу, что это за устройства, как они работают, какие у них преимущества и чем отличаются от обычных Wi-Fi роутеров. Рассмотрим Mesh системы, которые уже есть в продаже. Технология однозначно очень интересная и за ней будущее. Я думаю, что такие ячеистые Wi-Fi системы очень скоро заменят обычные маршрутизаторы, так как в их покупке просто не будет никакого смысла.

Я как-то особо не интересовался технологией Mesh Wi-Fi и этими устройствами до недавнего времени. Первый раз я познакомился с этими системами благодаря компании Tenda, когда они предложили мне протестировать их Mesh систему Nova. Я конечно же согласился и был очень приятно удивлен этими устройствами (у меня был комплект из трех модулей) и самой технологией в целом. Помню, как подключил все и настроил буквально за минуту. А радиус покрытия Wi-Fi сети (возможность расширения за счет дополнительных модулей) , скорость соединения, удобство управления, внешний вид и другие мелочи оставили только положительные эмоции. Я был восхищен этой системой. Понял, что это намного круче, проще и в некоторых случаях даже выгоднее обычных роутеров. Можете почитать мой . Систему Nova MW6 я через некоторое время отправил обратно в компанию Tenda. Другие производители сетевого оборудования, к сожалению, не предлагали мне свои Wi-Fi Mesh системы на обзор.

Смотрел новости в социальных сетях и наткнулся сразу на два поста от разных производителей. TP-Link представляли свою систему TP-Link Mesh Deco, а у ASUS была какая-то запись об их системе ASUS Lyra. Сразу решил, что нужно подготовить статью на эту тему. Возможно, она поможет вам с выбором между Wi-Fi роутером и Mesh системой. Да, пока-что эти системы не очень популярные, да и дорогие, но это без сомнения будущее. Думаю, со временем все беспроводные сетевые устройства будут делать с возможностью объединения их в ячеистую Wi-Fi сеть.

Что такое Wi-Fi Mesh и как это работает?

Слово Mesh имеет много значений. Одно из них – ячейка сети. Думаю, уже примерно понятно, что такое Mesh система, если мы говорим о Wi-Fi сетях. Mesh сети – сложная штука (если рассматривать их основу) , судя по информации с Википедии. Протоколы Mesh (IEEE 802.11s, IEEE 802.11k/v/r) и другая ненужная нам информация. Но в конечном итоге, в виде готовых Mesh систем, это очень простые и понятные устройства. Здесь производители конечно же постарались.

Чтобы было проще вам и мне, постараюсь пояснить простыми словами. Mesh системы состоят из модулей. Каждый модуль (отдельное устройство) , это примерно как обычный роутер. Как правило, эти системы продаются в разных комплектах поставки. Можно купить комплект из одного, двух, или трех модулей.

Все модули в Mesh системах одинаковые и равны между собой. Там нет главного устройства, к которому подключаются дополнительные модули (как роутер и репитеры, например) . И основная фишка в том, что эти модули (в рамках одной системы) могут очень быстро соединяться между собой по беспроводной сети и раздавать Wi-Fi на большие участки. Мы можем поставить один модуль, и его работа, в принципе, ничем не будет отличаться от работы обычного Wi-Fi роутера. Но если нам необходимо, мы покупаем еще один точно такой же модуль, включаем его в розетку, и буквально за 30 секунд они соединяются между собой и начинают работать в паре. На фото ниже вы можете увидеть, как работает Mesh система из 3-x модулей (на примере ASUS Lyra) .

Интернет по кабелю мы подключаем к одному модулю (к любому в этой сети) и этот модуль делиться интернетом с другими модулями Mesh системы, которые соединены между собой. Как правило, на каждом таком модуле есть несколько LAN портов, так что к ним можно подключать устройства по сетевому кабелю. Например телевизоры, игровые приставки, ПК и т. д. Установив один модуль, достаточно подключить к нему только интернет и питание. К другим модулям (если они вам необходимы) мы подключаем только питание.

Все эти модули (ячейки) создают единую, скоростную, бесшовную Wi-Fi сеть на весь дом, двор, квартиру, офис или другое помещение. За счет модульной системы, радиус покрытия Wi-Fi сети очень большой. Никаких "мертвых зон". Можно добавить столько модулей, сколько вам необходимо.

Основные особенности Mesh систем

Хочу отдельно выделить основные фишки и преимущества этих устройств и технологии Wi-Fi Mesh.

  • Большой радиус действия Wi-Fi сети. Именно за счет модульной системы. Например, мы установили один модуль какой-то Wi-Fi Mesh системы, и оказалось, что у вас в дальних комнатах, на других этажах, во дворе, в гараже, или еще где-то не ловит Wi-Fi. Мы просто покупаем еще один, или несколько модулей и включаем их в зоне стабильного приема сигнала от первого модуля. Они соединяться и расширяют Wi-Fi сеть. Их работа отличается от пары Wi-Fi роутер + усилитель сигнала (репитер) . Ниже я расскажу как именно и какие преимущества в этом плане у ячеистой Wi-Fi сети. Фото с сайта TP-Link, со страницы с описанием их системы Mesh Deco:

    Добавляем модули – расширяем Wi-Fi сеть. И что самое важное, без потери скорости, производительности, сбоев в работе и т. д. Эти устройства созданы для этого, поэтому, все работает очень стабильно. Более того, если один из модулей "вылетает" из сети, то система автоматически восстанавливает соединение подключаясь через другие модули.
  • Бесшовный Wi-Fi. Wi-Fi Mesh системы создают настоящую бесшовную Wi-Fi сеть. Сеть действительно одна в радиусе действия всех установленных модулей. Когда вы перемещаетесь по дому, или по квартире, то устройство подключается к модулю с лучшим сигналом. И что самое главное, в момент переключения на другой модуль, соединение с интернетом не пропадает. Даже если вы общаетесь через какой-то мессенджер, то обрывов не будет. Загрузка файлов не будет прерываться. Пример бесшовной Wi-Fi сети, которую раздает Tenda Nova MW6 (в сравнении с обычным роутером и репитерами) :

    Это очень круто. Везде одна сеть, как будто ее раздает одно устройство. Без каких-то обрывов, отключений, переключений и т. д.
  • Высокая скорость Wi-Fi сети и стабильное соединение. Все новые Wi-Fi Mesh системы двух, или трехдиапазонные. С поддержкой стандарта AC. Они раздают Wi-Fi сеть на частоте 2.4 ГГц и 5 ГГц. ASUS Lyra, TP-Link Deco M9 Plus и возможно другие системы используют один из двух диапазонов на частоте 5 ГГц для соединения между модулями сети. Две остальные сети (в разных диапазонах) доступны для подключения устройств. Вечная проблема при установке Wi-Fi усилителей – падение скорости. Даже несмотря на то, что модули Mesh систем соединяются по воздуху, скорость практически не падает. Главное, чтобы все модули находились между собой в зоне стабильного приема.

    Есть поддержка MU-MIMO и других технологий, которые созданы для улучшения и ускорения работы Wi-Fi сети.
  • Очень простая настройка и подключение дополнительных модулей. Все можно настроить через приложение с мобильного устройства. Фирменное приложение есть у каждого производителя.
  • Необычный внешний вид. Модули Mesh систем не похожи на обычные роутеры. Все системы, которые есть сейчас на рынке, выполнены в интересном дизайне.

Принцип работы всех Wi-Fi Mesh систем практически одинаковый. Но в зависимости от производителя и модели, характеристики и возможности конечно же могут отличаться. Так же есть отличая в настройках и функциях. Но в таких системах есть все, что необходимо обычному пользователю: родительский контроль, управление подключенными устройствами, гостевая сеть, перенаправление портов, антивирус и защита сети, обновление прошивки и т. д.

Почему Wi-Fi Mesh система лучше связки роутер + репитер?

Когда роутера недостаточно (в плане покрытия Wi-Fi сети) , самое оптимальное решение – установка . Можно использовать другой роутер, который может работать в режиме усиления Wi-Fi сети, или дополнительные точки доступа, которые подключаются к главному роутеру по кабелю, что не всегда удобно. Обычный репитер тоже клонирует настройки основной Wi-Fi сети, и беспроводная сеть у нас как будто одна, но в связке роутер + репитер есть два больших минуса, по сравнению с модульными Wi-Fi сетями.


Даже если на данный момент нет необходимости в расширении Wi-Fi сети, можно все ровно вместо маршрутизатора купить один модуль какой-то Mesh системы. Он будет работать как обычный маршрутизатор. А вот когда одного модуля будет недостаточно (например, при переезде в другую квартиру) можно докупить еще один модуль и очень быстро расширить Wi-Fi сеть. И эта сеть будет работать намного быстрее и стабильнее, а пользоваться ею будет намного приятнее по сравнению с сетью, которая построена на базе маршрутизатора и повторителя (он же репитер) .

Я ни в коем случае не говорю, что роутеры это прошлый век и их нужно срочно выбросить на помойку и покупать ячеистые Wi-Fi системы. Просто если вы выбираете себе новое оборудование для создания большой, надежной и быстрой Wi-Fi сети, то почему бы не обратить внимание на устройства, которые идеально для этого подходят.

Давайте более подробно рассмотрим самые популярные Mesh системы, которые уже можно приобрести.

Линейка TP-Link Mesh систем Deco представлена в трех моделях: Deco M5, Deco P7 и Deco M9 Plus. У нас вроде как официально представлена только Deco M5. Отличие между этими моделями в основном в мощности железа и скорости Wi-Fi сети. Самая мощная и быстрая – Deco M9 Plus. Это трехдиапазонная Mesh система стандарта AC2200. Внешний вид у них одинаковый. Вот только на Deco P7 есть один порт USB Type-C, а на Deco M9 Plus один обычный USB-порт.

Так как у компании TP-Link есть целая линейка Powerline устройств, то в своих Mesh системах (только в модели Deco P7) они применили технологию гибридного соединения. Когда модули ячеистой системы соединяются не только по Wi-Fi, но и по электропроводке. Такое соединение более стабильное, по сравнению с Wi-Fi. А в паре Wi-Fi + Powerline скорость соединения между модулями (а значит и на всех устройствах) должна увеличиться до 60%.

Еще одна интересная особенность этих систем – IoT Mesh. Она позволяет объединить в одну систему устройства умного дома (датчики и другие компоненты) , которые подключаются не только по Wi-Fi, но и по Bluetooth и Zigbee. Правда эта фишка есть только в Deco M9 Plus.

Есть приложение Deco для быстрой настройки и управления. Система защиты TP-Link HomeCare. К такой системе можно подключить более 100 устройств по Wi-Fi сети. И еще на каждом модуле есть 2 LAN-порта (один порт, на одном модуле будет использоваться как WAN) .

Покрытие Wi-Fi сети (для Deco M5) : 2 модуля – до до 350 кв.м. 3 модуля – 510 кв.м.

Tenda Nova

На официальном сайте представлены 4 модели: MW3, MW5, MW5s, MW6. Все они немного отличаются внешним видом и характеристиками. Вот так выглядит Tenda Nova MW6 (которую я уже тестировал) :

ASUS Lyra

Самая младшая – Lyra mini. Двухдиапазонная Mesh система, скорость Wi-Fi сети до 1300 Мбит/с. Дальше идет Lyra Trio. Так же двухдиапазонная, с максимальной скоростью 1750 Мбит/с и поддержкой технологии MIMO 3x3. И самая мощная и быстрая – Lyra. Это уже трехдиапазонная ячеистая Wi-Fi система со скоростью беспроводной сети до 2200 Мбит/с.

Большая зона покрытия Wi-Fi сети, расширение за счет установки дополнительных модулей, бесшовный роуминг в сети между всеми модулями, оптимизация подключения устройств, защита вашей сети с помощью AiProtection, простая настройка и управление через приложение ASUS Lyra и много других фишек. Все эти системы практически одинаковые, даже если рассматривать устройства от разных производителей.

Есть возможность соединить узлы Mesh системы по кабелю. Если, например, в вашем доме уже проложен сетевой кабель. Такое соединение будет более стабильным и надежным, а Wi-Fi сеть полностью освободится для подключения ваших устройств.

Можно приобрести необходимое вам количество узлов системы ASUS Lyra (1, 2, или 3 модуля) .

Мощная, трехдиапазонная Mesh система от компании Zyxel. Она выполнена в красивом белом корпусе.

С помощью Zyxel Multy можно организовать быструю Wi-Fi сеть как в маленькой квартире, так и в большом загородном доме. Продается эта система в двух комплектациях. С одним, или двумя модулями. Если мы покупаем один модуль, то он будет работать у нас как обычный маршрутизатор. Если необходимо, то в любой момент можно купить еще один модуль. Если у вас большая квартира, или дом, где один маршрутизатор не справлялся, то рекомендую сразу покупать комплект из двух модулей.

Так как это трехдиапазонная система, то одна сеть в диапазоне 5 ГГц используется исключительно для соединения между модулями сети. Вторая сеть на частоте 5 ГГц и сеть на частоте 2.4 ГГц доступны для подключения устройств.

На корпусе Multy X кроме 3x LAN и 1 WAN-порта есть еще 1 USB-порт стандарта 2.0.

Есть функция, которая выбирает оптимальный вариант соединения модулей между собой. Ну и конечно же пользователь может установить мобильное приложение для управления Mesh системой от Zyxel.

Линейка систем Orbi представлена в трех вариантах:

  • RBK30 (AC2200) – в комплект входит один роутер и устройство для расширения сети (подключается напрямую в розетку) . Но это все та же Mesh система, а не обычный маршрутизатор и репитер. Трехдиапазонная технология. Одна сеть выделена для соединения между роутером и усилителем. Покрытие Wi-Fi до 200 кв. метров.
  • RBK40 (AC2200) – покрытие Wi-Fi до 250 квадратных метров. Эта система состоит из двух одинаковых модулей. Система так же трехдиапазонная. Один модуль выделен для соединения между ячейками сети.
  • RBK50 (AC3000) – это самая производительная Wi-Fi система от Netgear. Отличается большей производительностью и скоростью Wi-Fi сети. Покрытие Wi-Fi до 350 квадратных метров.

Вот так выглядят Wi-Fi-системы Netgear:

Есть приложение для управления системой с мобильного устройства и набор необходимых функций. Родительский контроль, гостевая Wi-Fi сеть и т. д.

Выводы

Основные плюсы по сравнению с роутерами: большое покрытие Wi-Fi сети и бесшовная беспроводная сеть (бесшовный роуминг) . Очень просто расширять Wi-Fi сеть за счет установки дополнительных модулей. Простая настройка. Ну и интересный внешний вид.

Минусы по сравнению с роутерами: цена. Стоят такие системы не дешево. Но они только начинают появляться на нашем рынке, так что цена будет падать.

Пока что мне приходилось настраивать только Mesh систему Nova от Tenda. И в начале статьи я уже писал, что был приятно удивлен простотой и возможностями этих устройств. Считаю, что это просто идеальный вариант для больших квартир и загородных домов. Особенно многоэтажных домов. Три модуля из любой ячеистой Wi-Fi системы без проблем обеспечат вам стабильное покрытие не только в доме, но и во дворе и других постройках на вашем участке. А если трех модулей будет мало, можно просто купить и установить еще один модуль, или несколько.

Будем следить за развитием этих устройств. В ближайшее время постараюсь сделать обзор других Wi-Fi систем, о которых писал выше. Оставляйте комментарии, напишите свое мнение о технологии Wi-Fi Mesh и о системах, которые, возможно, вам уже удалось проверить в работе.

Сколько сетевого инженера ни корми (обещаниями про дальность линка и количества абонентов на точку), а он все равно на Mesh смотрит. Если мы не говорим о музыкальной группе или строительных сетках, то Википедия отправит нас на страницу "Ячеистая топология" . И вроде бы все правильно, но Mesh - это больше, чем просто сетевая топология. Это большой пул технологий и, скорее всего, философия. После того как погружаешься в тему и проникаешься подобными идеями, обратного пути уже нет и смотреть на мир по-старому не получается. После цикла статей у вас вряд ли сохранится привычный стиль мышления и решения возникающих задач. Так что, если по новому законодательству вы планируете в ближайшие месяцы выйти на пенсию и провести остаток дней на любимой даче, то дальше эту статью можно не читать. Но если вы еще полны сил открывать для себя что-то новое - милости прошу ознакомиться со статьей в Википедии, а затем окунуться в этот омут цикл.

Итак. Давайте определимся, что мы будем понимать под термином Mesh:

1. Ячеистая топология.
Это обязательный пункт. Если кто-то вам пытается втирать про "главный роутер" или "дерево маршрутов", то смело отправляйте этого человека почитать цикл статей, и помните, что он - мошенник. Никаких деревьев или "главных" маршрутизаторов в Mesh-сетях быть не может. Это всегда плоская сеть и всегда одноранговая. Возможны случаи, когда поверх одной Mesh-сети построена другая, но это сложно для восприятия в самом начале и будет раскрыто в следующих статьях.

2. Наличие алгоритмов управления трафиком (выбор пути).
Не менее важный пункт. Его отсутствие означает, что перед вами простой повторитель или даже несколько повторителей, которые не способны оптимально передавать трафик и являются пережитком прошлого.

3. Возможность перестроения топологии сети в любой момент с сохранением связности.
По сути, вытекает из второго пункта. В любой момент кто-то может покинуть сеть или переместиться в другое место. Сеть обязана незамедлительно продолжить работу. Можно назвать это "автовосстановление", что будет не совсем корректно, так как этот пункт еще и про динамические сети. То есть, представьте, что все маршрутизаторы постоянно находятся в хаотичном движении, а трафик передавать надо. Пограничное состояние и частный случай, но именно он сразу про Mesh, автовосстановление, перестроение топологии и вот это вот все.

В следующих статьях мы с вами обязательно затронем тему full mesh VPN, оверлейных сетей и алгоритмов маршрутизации, а пока раскроем основы основ и сконцентрируемся именно на беспроводных сетях.
Итак… Неразрывно с термином Mesh всегда идет довесок с пачкой других терминов, без которых сложно отделить мух от котлет и пояснить хоть что-то, так что место им в самом начале.

  • Нода/Узел (Node) - равноправный участник сети. Обычно представляет собой роутер.
  • Путь/Маршрут (Path/Route) - цепочка промежуточных нод, необходимых для передачи пакета в данный момент. Разные варианты могут применяться в зависимости от алгоритма по которому осуществляется передача трафика.
  • Шлюз (Gateway) - пограничный маршрутизатор, через который ноды могут соединиться с другими сетями.

В большинстве случаев трафик всегда идет от ноды по некоторому пути до шлюза, либо от шлюза до этой же самой ноды, также по некоторому пути. Бывает и такое, что ноды обмениваются трафиком внутри сети. С точки зрения построения пути/маршрута, это должна быть абсолютно аналогичная операция по которой строится этот же самый маршрут до шлюза (помните что я говорил про дерево).

Давайте уже перейдем к примерам.

На сегодняшний день самым распиаренным проектом и, пожалуй, самой крупной Mesh-сетью является Guifi . Территориально сеть располагается в Каталонии и по состоянию на 2018 год даже имеет собственный AS. Около тридцати тысяч нод задействовано ежесекундно для передачи пользовательского трафика. Только вдумайтесь в эти цифры… А когда-то давно все начиналось с одного роутера для того, чтобы прокинуть интернет в зону, куда ни один провайдер его тянуть не решался. Потом соседям, друзьям, и т.п. Так образовалось одно из самых мощных сообществ.
Не менее круты ребята из Freifunk , немецкого сообщества, занимающегося тем же самым. Это сообщество является примером того, как Mesh перерастает в философию. Они провозглашают одними из своих главных принципов свободу доступа к информации и коммуникации. Фактически, группа энтузиастов активно развивают СПО и даже делают коммиты в ядро Linux, попутно строя беспроводные Mesh сети в Германии.
Но есть и коммерческие проекты, такие как Village Telco . У них смешная реклама на ютубе, посмотрите обязательно. Фактически, они не просто разворачивают сети, но и предоставляют сервис IP-телефонии. Все началось с исследования, показавшего, что наибольшее количество звонков совершается жителями деревень друг другу. Оно же показало, что во многих деревнях связь очень плохая, а местами ее просто нет. Поскольку установка базовых станций по всем правилам была не по карману этому стартапу, они решили проблему элегантно - взяли за основу Wi-Fi. Компания существует и сейчас, продолжая свое благое дело.
Был еще когда-то African WUG (Wireless User Group) и проект OLPC (One Laptop per Child).

Все эти сообщества и проекты можно объединить по одному критерию - "Построение Mesh-сетей в местах с малоразвитой или отсутствующей инфраструктурой ". Именно для этого Mesh-сети подходят лучше всего. Удаленые от райцентра поселки, пустынная местность или деревня в горах. Используя Mesh, можно не только обеспечивать такие места связью и доступом в интернет, но еще и зарабатывать на этом.

Вторым распространенным сценарием применения является "Массовый доступ в интернет для жителей города ". В Европе много исторических центров и туристических мест, где оптику тянуть просто невозможно, потому что никто на это разрешения не даст, а пару веков назад строительство кабельной канализации еще не было таким очевидным требованием. Приходится выкручиваться и снова для решения такой задачи идеально вписываются Mesh-сети.

В Барселоне сейчас практически на каждом фонарном столбе можно встретить Wi-Fi-хотспот, предоставляющий доступ в интернет туристам. В студенческом городке MIT с 2006 года существует похожая сеть (ее еще называют "Roofnet"). Фактически, это все о случае, когда вокруг на расстоянии от нескольких сотен метров до километра есть точка выхода в интернет, но в силу обстоятельств покрыть район связью не получается. Это могут быть огромные склады, где для нужд автоматизации требуется покрытие Wi-Fi на всей площади, либо парки отдыха, где есть только деревья и фонари освещения.

Просто представьте, люди 21 века останавливаются в уютных апартаментах, выходят на утреннюю пробежку, надевают наушники с любимой музыкой и обнаруживают, что в парке возле гостиницы их любимый стриминговый сервис не работает, потому что интернет пропал! В итоге, гостиница получает кучу негативных отзывов, бизнес страдает. И вроде бы расширить зону покрытия Wi-Fi надо, а тянуть провода нельзя, иначе вид парка испортится и это будет еще одна волна негативных отзывов. Попробуйте угадать, при помощи какой технологии можно решить данную проблему быстро и эффективно? Думаю, вы меня поняли.

Еще одним немаловажным сценарием является "Поддержание связности между движущимися объектами ". Как бы так попроще объяснить… Помните проект Google Loon? В котором воздушные шары летали и раздавали интернет? У меня для вас новости. Они еще и организовывались в Mesh-сеть. Я серьезно, вот патент . Фактически, такая Mesh-сеть между шарами использовалась как Backbone для базовых станций LTE. Этакий симбиоз, но дело не в этом. Воздушные шары - штука непредсказуемая, которая может изменить свое положение в пространстве в любое время. Топология подобной сети изменяется постоянно, ноды могут прилетать и улетать в прямом смысле.

Поддерживать связность в таком режиме под силу только Mesh-алгоритмам маршрутизации.

Аналогичные решения востребованы на промышленных площадках с большим количеством перемещающейся техники (погрузчики на складах, самосвалы в карьерах, группы беспилотников или транспортных средств в одну колонну, так называемое "караванное движение").

Про транспорт, кстати, стоит раскрыть подробнее.

В современном мире все стремится к автоматизации и месту под солнцем в "интернете вещей", и автомобили не стали исключением. Слышали про V2V или V2X? Технологии для умных автомобилей, позволяющие им связываться друг с другом или с чем угодно еще, принимать на основе полученной информации решения и действовать коллективно. По сути, роевой интеллект. Вот это тоже про Mesh, даже стандарт есть - 802.11p . Да, снова на базе Wi-Fi. И это прекрасно, так как можно строить решения на Commodity hardware и сразу с порога снизить стоимость конечного продукта. Поддержку в Linux завезли много лет назад под именем OCB .

Казалось бы, бери и делай, но бурного роста, Mesh не снискал ни по одному из направлений.
Почему же так получилось? Ответ прост и состоит из нескольких пунктов:

1.Низкие канальные скорости.

В двухтысячные годы максимум, что можно было реально получить - это 300 Мбит/с в диапазоне 5 ГГц. Для OCB и того меньше, в два или четыре раза. Реальные скорости при таких битрейтах даже по тем временам никого не впечатляли. Потому все как-то заглохло и было отложено в ящик до лучших времен.

2. Отсутствие структурированных обучающих материалов.
В то время Mesh являлся, по большей части, уделом энтузиастов как в лице пользователей, так и в лице компаний, пытающихся развивать эту технологию. Порог входа оказался выше, чем для традиционных сетей, что и привело к низкой популярности Mesh.

Сегодня ситуация изменилась. 802.11ac позволяет добиться 1.7 Гбит/с канальной скорости на существующем оборудовании. Уже на подходе массовые роутеры с поддержкой 802.11ax. Появились стандарты 802.11ad на 60 ГГц и канальную скорость 4 Гбит/с. Вот уже почти вышел 802.11ay с реальными канальными скоростями 44-176 Гбит/с, а MU-MIMO так и просится в Mesh. Другими словами, набралась критическая масса технологий и пропускная способность вышла на необходимый уровень только сейчас. Остается, правда, второй пункт - про обучающие материалы. И если я мало могу сделать по части стандартов беспроводной связи, то рассказать и объяснить попробую. Глядишь, что-то и получится.

Вычисление емкости и пропускной способности

Для того чтобы понять как проектируются Mesh-сети, нужно забыть на первое время методы проектирования стандартных сетей Точка-Многоточка. Да, это важно. Просто представьте, что в голове у вас только знания о распространении радиосигнала, примерное понимание того, как работает Wi-Fi и математика с логикой...
Также, сразу определимся в одном: эта статья - про технологии, а не про регуляторику в РФ и других странах. Сценарии специально, считайте искусственно, упрощены и даже искажены лишь для того, чтобы было понятнее.

Итак, условия равные. Все устройства - 802.11ac, (MU-)MIMO 2x2, ширина канала 80 МГц.

Основные отличия от привычного сектора - тут скорость не падает, она делится.

Для того, чтобы лучше понять, представьте себе пожарных, которые передают ведро с водой по цепочке (ВОТ). Точно так же передается пакет в Mesh-сетях. Отличие состоит в том, что пожарный может передать ведро и тут же взять еще одно, но в радио ситуация другая. Пока один роутер вещает в эфир, его слышат несколько соседей и не могут в этот момент ничего передавать.

Связано это с несколькими факторами. Во-первых, есть такая вещь как CCA и она не позволяет посылать что-либо в эфир, пока уровень сигнала не упадет до приемлемого. Во-вторых, даже если выключить CCA, то механизм RTS/CTS (Request to Send / Clear to Send) будет работать именно так как на картинке выше, не позволяя роутеру передать кадр, если он услышал CTS-подтверждение от соседа. Так как антенны обычно всенаправленные, то подобная схема деления пропускной способности распространяется на 360 градусов.

То есть, представьте, что у пожарных ведро не классическое конусное, а тяжелое и с длинным горизонтальным шестом, который одновременно вынуждены держать три человека. Первый передал второму, второй третьему, третий начал передавать четвертому, но второй все еще не может отпустить шест и первый вынужден его ждать. Передать следующее ведро он сможет только тогда, когда четвертый гарантированно передаст ведро пятому и у второго руки точно будут свободны. Просто прокрутите в голове эту ситуацию несколько раз.

Можно улучшить ситуацию добавлением еще одного радиомодуля. В таком случае пропускная способность вырастет, так как устройство получит возможность одновременной передачи/приема сразу двух кадров. Чуть более лучшим подходом считается передавать кадр не через тот радиоинтерфейс с которого он был получен, то есть, чередовать. Это позволяет оптимизировать прохождение и максимально отдалить в пространстве next-hop в рамках одного и того же беспроводного канала.

Еще один способ увеличения пропускной способности - это занижение мощности. Если применять эту технику, то за счет нелинейности затухания сигнала в открытом пространстве можно добиться снижения зоны видимости, избежав тем самым еще одной итерации деления пропускной способности в два раза.
То есть, представим, что пожарные все так же передают ведро, но теперь шест стал короче и держат его одновременно только два человека. И вот, первый передал второму, ждет пока второй передал третьему, третий - четвертому, и можно снова передавать ведро, так как у второго руки свободны.

Иногда получается воспользоваться ландшафтом и распределить точки таким образом, что у каждой ноды (узла) будет связь только с двумя соседями. Получается, что мы убираем еще одну итерацию деления и все становится совсем хорошо, но не идеально.


Тут нужно оговориться, что он частный и в реальности подобное бывает редко. Обычно есть некоторые участки в зданиях или на местности, где получается организовать сеть таким образом в пределах двух-трех хопов. Пример с домами искусственный и предназначен для демонстрации, как уже было отмечено выше.

Чем больше различных техник мы применяем - тем больший выигрыш в итоге получим. Помимо занижения мощности и чередования интерфейсов, есть и другие. Например, если мы установим исключительно Wave2 роутеры с MIMO 2x2 и включим MU-MIMO, то в некоторых случаях пропускная способность может увеличиться. Это сильно зависит от характера трафика и конфигурации самой сети, но именно в Mesh такие технологии как MU-MIMO работают с наибольшей эффективностью.

Практика

А теперь давайте посмотрим как прикинуть по-быстрому параметры беспроводной сети и сравним Сектор VS Mesh.

Да, вспоминать свои наработки по секторам уже можно.
Итак, основное отличие в том, то Mesh прекрасно работает там, где классические секторные решения просто не будут работать. Например, плотная застройка таунхаусами/коттеджами с большим количеством деревьев. Юстировать CPE сквозь листву - то еще удовольствие. А Mesh наоборот будет чувствовать себя хорошо, так как листва и дома подавляют сигнал от следующих за next-hop роутеров.
Второе главное отличие - масштабируемость. Если в классическом секторе уже присутствуют 30-40 абонентов, то добавление еще пяти ощутят на себе все без исключения. Увеличится средняя задержка и сильно упадет емкость, особенно если это плохой абонент с хреновым показателем LOS. Точные цифры зависят от того как работает TDMA/Polling и какой слот выделяется на абонента. Если слот около 10 мс и сектор постоянно загружен, то я бы поставил на 20-30 мс увеличение средней задержки.
Инфинет предлагает считать по формуле:

(C*2.5*F)/S ,где:

C - количество подключенных абонентских устройств (CPE),
F - размер фрейма, в миллисекундах,
S - используемое количество субслотов.

На 40 клиентах и полной нагрузке, это около 400 мс задержки. TDMA, чтоб его. В этом главный минус централизованного подхода с установкой БС - весь сектор делит одно и то же эфирное время.

Для Mesh показатель будет разный в разных участках сети. Те станции, что ближе к шлюзу, будут иметь наименьшую задержку, а самые дальние - максимальную.
Считать я предлагаю по такой же формуле:

(C*2.5*F) ,где:

C - количество Mesh роутеров в цепочке,
F - размер фрейма, в миллисекундах.

Если бы наш Mesh представлял из себя длинную вязанку из роутеров (частный случай), то в худшем варианте результаты расчетов максимальной задержки были бы точно такими же. Правда, с одной оговоркой - "только для крайних устройств". В середине это были бы, соответственно, 200 мс, а ближе к шлюзу у нас жили бы самые счастливые абоненты с задержкой около 10 мс.
Тут стоит учесть, что из-за относительно близкого расположения устройств, битрейт будет выше, чем в секторе примерно в два-три раза. А это значит, что время передачи одного фрейма снизится на эту величину и задержка также пропорционально уменьшится.

Если еще ближе подойти к реальности, то сеть имеет ячеистую топологию (ну, Mesh же) и количество роутеров в цепочке будет примерно равняться (A/N), где:

A - общее количество роутеров,
N - среднее количество соседей.

Обычно N равняется 8 и по формуле получится примерно 50-75 мс максимальной задержки, 25 мс средней и около 5-10 мс на границе сети рядом со шлюзом.

А что получится при добавлении еще пяти абонентов?

Для этого предстоит ответить еще на один вопрос - "а в какую часть сети мы этих абонентов добавляем?". Если это самая дальняя от шлюза сторона, то остальная сеть ничего не заметит, так как для них количество роутеров в цепочке не изменилось. Если в середину, то это около 5 мс дополнительной задержки для дальней (от шлюза) половины сети. Как ни крути, а в данном случае влияние на задержку меньше примерно в десять раз. Почему так получается - ответ лежит на поверхности. Роутеры делят между собой только эфирное время соседей. Пока на дальнем конце кто-то передает свой кадр, в другой части сети происходит то же самое. Отсюда и выигрыш.

С пропускной способностью все чуть сложнее, но суть примерно та же. Я предлагаю считать емкость по такой формуле:

(B/A/K) , где:

B - средневзвешенный битрейт. Пусть в нашем случае он будет равным 300 Мбит/с,
A - количество CPE,
K - эмпирический коэффициент издержек при использования эфира, равный 2.

Для 40 абонентов получится среднее значение 3,75 Мбит/c. Если мы добавим пять дальних абонентов с не самым высоким битрейтом, то средний уменьшается, скажем до 280 Мбит/с. Получается уже среднее значение в 3,1 Мбит/с на каждый CPE.

Это при условии, что мы пытаемся выровнять трафик между всеми абонентами. В реальности будет большой дисбаланс между ближайшими к БС устройствами и отдаленными/с нарушением LOS.

В Mesh-сети, как я уже писал ранее, у нас вновь будет неравномерность между ближайшими к шлюзу устройствами (первый-второй-третий хопы) и теми кто подальше. Картину сильно улучшают высокие, по сравнению с сектором, битрейты устройств. В нашей лаборатории это примерно 500-600 Мбит/c. Пропускную способность будем считать исходя из того же эмпирического коэффициента накладных расходов, равного 2. Графически это можно представить вот так:

Самые дальние абоненты получаются самыми дорогими. Ради доставки кадра придется "отнимать" эфирное время у других по несколько раз хоп за хопом.

Если отдать все на откуп великому рандому, то ближайшие к шлюзу устройства будут захватывать ресурсы быстрее и доминировать над провинцией (прямо как в жизни). Это позволит естественным образом ограничить доставку "драгоценных" кадров и не давать сети деградировать до 70 Мбит/с ради нескольких роутеров с периферии. Ценой такого упрощения будет абсолютно непредсказуемая задержка и пропускная способность в каждый момент времени.

Для более-менее равномерного распределения пропускной способности можно пойти двумя путями:

  • Тяжелая наркомания в виде хитрых методов доступа к среде с выделением слота, основанных на сверхточной синхронизации времени между нодами через GPS или еще более наркоманских алгоритмов синхронизации времени по "lossy"-линкам. Эдакая попытка натянуть сову на глобус и сделать децентрализованный TDMA.
  • Простое инженерное решение по ограничении скорости на AP или Ethernet-интерфейсах.

Какой же порог в мегабитах нам задать? Давайте попробуем посчитать. Для удобства выложу таблицу.

Это примерно в 1,7 раз меньше, чем результат, который мы получили в путем вычисления аналогичного параметра на секторе. Так как Mesh-сеть редко будет нагружена под 100%, я бы ограничил клиентское подключение порогом в 5 Мбит/с. Маловато? Я уже говорил выше, есть техники, позволяющие увеличить пропускную способность примерно в два раза. MU-MIMO на физическом уровне и Linear Network Coding на канальном. Исходя из различных тестов, можно говорить о приросте примерно в полтора раза за счет MU-MIMO и до 30% за счет Linear Network Coding . О них я расскажу как-нибудь в следующий раз. Можно догнать среднюю скорость до 4,5 Мбит/c ценой небольшой потери в задержке (10-20%) и это будет даже больше, чем на секторе с таким же количеством абонентов.

Тут уже сценарий для провайдеров: ограничить на Ethernet в соответствии с тарифом "5 Мегабит" и пользоваться тем, что в любой точке можно смело увеличивать до 10 Мбит/с.

Нет, я не ставлю себе цель показать, что Mesh лучше и по всем показателям обходит сектор. Я лишь хочу показать, что порядок цифр одинаков и разница на уровне погрешности в вычислениях. Так что, внимания заслуживают оба подхода.
Хотя, тут стоит добавить очень важную деталь. MU-MIMO и Linear Network Coding - это техники, относящиеся непосредственно к роутерам. Есть и другой подход - техники, относящиеся к архитектуре сети. Если учесть, что базовых станций мы не ставим и затраты на подведение канала кратно снижены, можно установить на границе сети второй шлюз. Желательно сделать это на противоположном краю, и ниже я объясню почему.

В Mesh-сетях деление пропускной способности начинается от шлюза или точки входа. Градиент устремляется примерно в середину сети и там находятся самые дорогие, в плане затрат на доставку кадров, абоненты. Установкой такого шлюза на другом конце сети мы, фактически, делим количество максимальных хопов пополам, а каналы первого и второго хопов обоих шлюзов будут абсолютно независимы в плане разделения эфирного времени, так что их пропускную способность можно смело складывать. В идеале, конечно, подвести третий канал прямо в середину (ну а что, LHG60 стоит очень дешево).

Горизонтальное масштабирование - это главный конек Mesh. Сектор с трудом, но вытянет 60-80 абонентов. Mesh-сеть совершенно спокойно может включать в себя 100-300 устройств. Для сектора это уже тот уровень, когда задержки перевалят за 1-2 секунды и многие приложения начнут говорить "Давай, до свидания!" при попытке подключиться.

Типовые сценарии

Теперь решим задачу. У нас есть зажиточный коттеджный поселок на 200 домов, расположенный ООЧЕНЬ далеко от города в живописных местах, где берет только пара операторов мобильной связи и звонить можно, но из интернета доступен, разве что, EDGE. Все как один хотят интернет и чтоб 25 Мбит/с. Жители настолько круты и организованы, что грозятся периодическими флешмобами по одновременному тестированию пропускной способности всем поселком. Места очень живописные и портить внешний вид всякими вышками местные жители позволят, разве что, через свой труп, а так же грозятся засудить всякого, кто попробует построить хоть что-то высокое и уродливое (в их понимании) на расстоянии до 5 км от границы поселка. Всюду аккуратные дорожки из плитки, небольшие аккуратные фонари освещения и силовые провода, спрятанные под землю. Глава поселка, отвечающий за чистоту и красоту, после предложения покрыть поселок xPON и протянуть по столбам оптику, чуть было не запустил в вас папкой с документами, но вовремя остановился и пояснил, что такое решение нарушит внешний облик и категорически неприемлемо.

Вы уже поняли к чему я клоню. Вышки ставить нельзя, кабель тянуть нельзя. Возможны следующие варианты:

1. Подключение уже присутствует на границе сети

Каким-то чудом оказалось, что рядом проходит оптика xТелеком и, слава великому рандому, у начальника участка хорошее настроение. Он поведал, что как раз не знает, кому бы продать еще одно волокно, руководство задает неудобные вопросы, а тут вы. Цена всех устроила, жители не против, но ставят условие обязательно восстановить естественное покрытие местных холмов. На том и порешали. Гигабитный аплинк у нас есть, УРА!

2. Подключение РРЛ

Вроде обидно, но есть шанс вывести ситуацию в положительное русло, а может даже и с выгодой для себя. Итак, следим за руками. Подвести интернет в поселок можно и РРЛ, особенно при ценах на такие устройства как LHG60. Подключить по старой схеме с одним шлюзом можно, но мы это уже считали и такое решение нам не интересно. По традиции я предлагаю два стула варианта: подключение в двух точках с увеличением пропускной способности на клиента до 100 Мбит/с и подключение в двух точках с удешевлением абонентского устройства в полтора-два раза.

Начнем с первого варианта. Обратите внимание на картинку. Синий и оранжевый цвета вновь обозначают зоны распространения сигнала. В данном случае преимущество дорогих Mesh-роутеров с двумя радиомодулями позволяет увеличить реальную пропускную способность вдвое (и уменьшить вдвое задержки, да-да) за счет добавления второго шлюза. Таким образом, можно заложить увеличение пропускной способности всем клиентам до 100 МБит/с без какой-либо замены оборудования, устроить промо или сразу брать с них в два раза больше денег.

Во втором случае (без удвоения) мы придерживаемся той же стратегии, но используем устройства с одним радиомодулем. Ориентировочно, они обойдутся в два раза дешевле. Картинка с домами вся покрыта оранжевым, что символизирует использование одного общего канала на всех.

3. Подключение спутниковым каналом.

В этом случае начальник участка оказался мудаком и оптикой не поделился. Вокруг только лес, луга и холмы. Единственное решение, которое хоть как-то может подарить людям интернет - это двунаправленный спутниковый канал. Триколор сегодня предлагает безлимит до 40 Мбит/с на одного клиента за символическую цену. Дело осталось за малым - установить людям несколько комплектов в поселке, развернуть Mesh-сеть и наслаждаться своей маленькой монополией.

Скорости небольшие, но альтернатив нет. К тому же, всегда можно поставить еще пару спутниковых комплектов и увеличить общую пропускную способность (да, снова горизонтальное масштабирование).

Итоги

В общем и целом можно подытожить все вышесказанное в виде таблицы.

Особенности PTMP MESH
Деградация пропускной способности при добавлении новых клиентов Высокая Низкая
Увеличение средней задержки при добавлении новых клиентов Значительное Практически отсутствует
Эффективность при малом количестве абонентов Высокая Низкая
Эффективность при среднем количестве абонентов Средняя Средняя
Эффективность при большом количестве абонентов Низкая Высокая
Характер распределения задержки Равномерный, задержки высокие Градиент в сторону увеличения по направлению от шлюза.
Влияние естественных преград на пропускную способность
(эффективность в среде плотной застройки с зелеными насаждениями)
Кратная деградация Кратное увеличение
Стоимость развертывания Высокая Низкая
Стоимость абонентского комплекта Низкая Низкая/Средняя
Стоимость базовой станции Высокая Отсутствует
Скорость монтажа Низкая Высокая

Надеюсь, было познавательно. В следующих статьях мы разберем протоколы маршрутизации для Mesh сетей и, собственно, какие технологии в данных сетях применяются.

Еще увидимся.

Искренне ваш,
Злой Беспроводник.
@EvilWirelessMan